A noncommutative algorithm for multiplying $3 \times 3$ matrices using 23 multiplications

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A non-commutative algorithm for multiplying 5 $\times$ 5 matrices using 99 multiplications

We present a non-commutative algorithm for multiplying $5 \times 5$ matrices using 99 multiplications. This algorithm is a minor modification of Makarov algorithm [4].

متن کامل

A non-commutative algorithm for multiplying (7 $\times$ 7) matrices using 250 multiplications

We present a non-commutative algorithm for multiplying (7x7) matrices using 250 multiplications and a non-commutative algorithm for multiplying (9x9) matrices using 520 multiplications. These algorithms are obtained using the same divide-and-conquer technique.

متن کامل

Stability of a method for multiplying complex matrices with three real matrix multiplications

By use of a simple identity, the product of two complex matrices can be formed with three real matrix multiplications and five real matrix additions, instead of the four real matrix multiplications and two real matrix additions required by the conventional approach. This alternative method reduces the number of arithmetic operations, even for small dimensions, achieving a saving of up to 25 per...

متن کامل

A New General-Purpose Method to Multiply 3x3 Matrices Using Only 23 Multiplications

One of the most famous conjectures in computer algebra is that matrix multiplication might be feasible in nearly quadratic time, [8]. The best known exponent is 2.376, due to Coppersmith and Winograd [9]. Many attempts to solve this problems in the literature work by solving, fixed-size problems and then apply the solution recursively [6,22,17,21,2]. This leads to pure combinatorial optimisatio...

متن کامل

Automatic formulation of falling multiple flexible-link robotic manipulators using 3×3 rotational matrices

In this paper, the effect of normal impact on the mathematical modeling of flexible multiple links is investigated. The response of such a system can be fully determined by two distinct solution procedures. Highly nonlinear differential equations are exploited to model the falling phase of the system prior to normal impact; and algebraic equations are used to model the normal collision of this ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the American Mathematical Society

سال: 1976

ISSN: 0002-9904

DOI: 10.1090/s0002-9904-1976-13988-2